

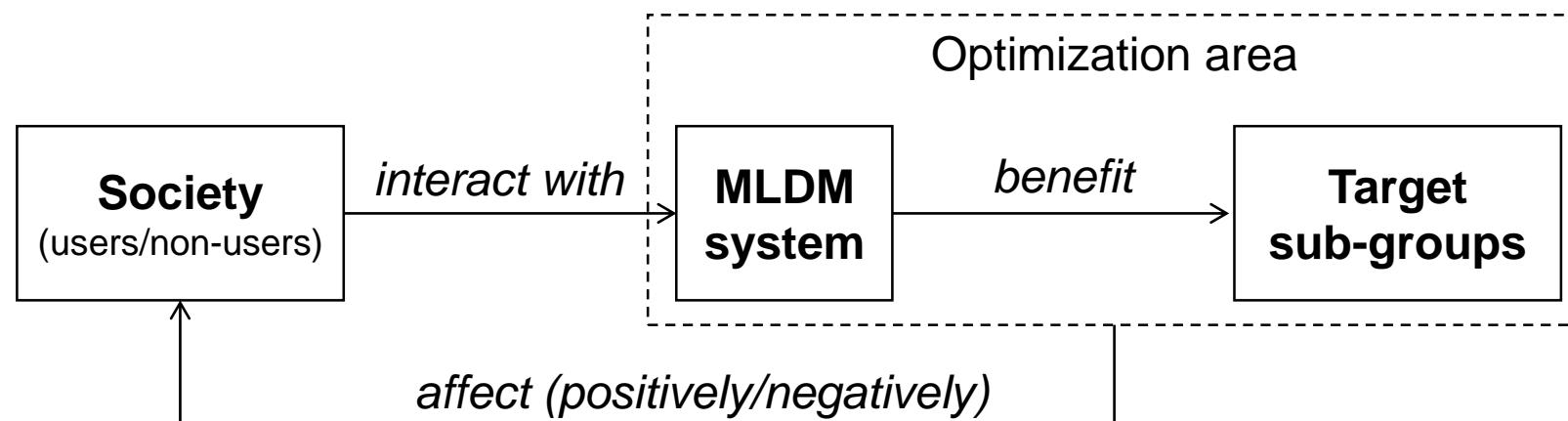
Algorithmic bias

Guilherme Alves

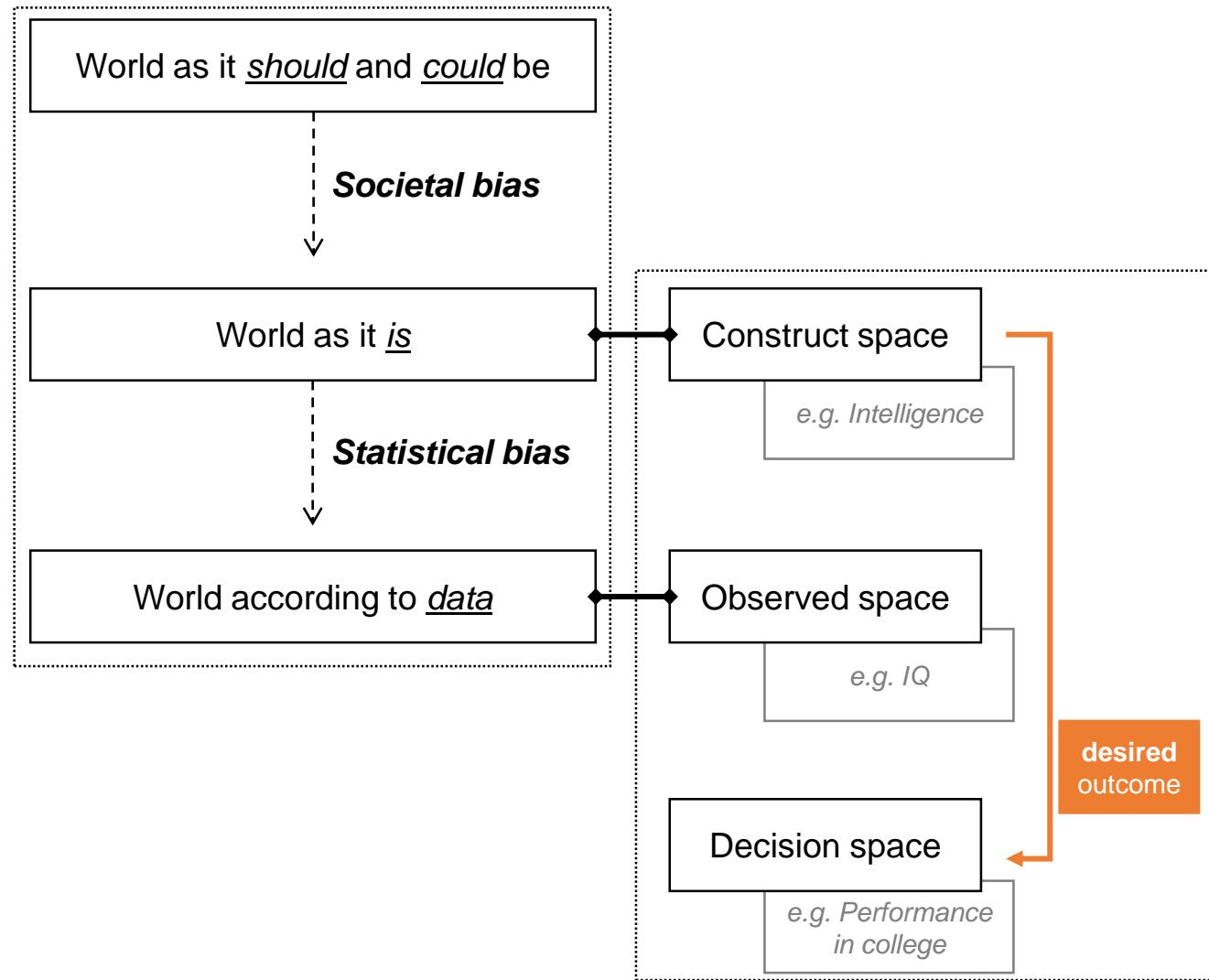
guilherme.alves-da-silva@univ-lorraine.fr

Society and Machine Learning (ML)

- Helping humans with ML-based Decision Making systems
 - **Humans**: **subjective** decisions
 - **Machines**: “**objective**” decisions



Biases, biases ... everywhere!



Biases, biases ... everywhere!

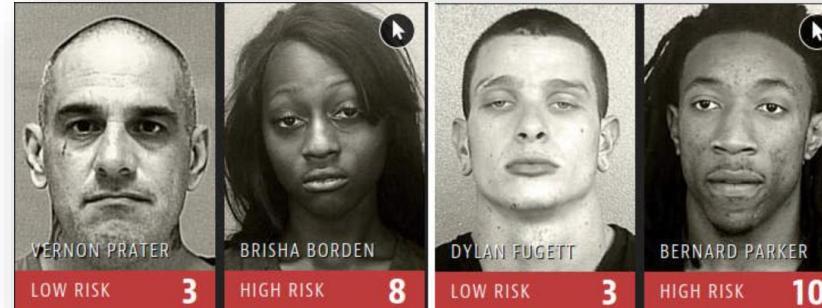
- **ML models:** *designed* to have some bias that *guide* them in their task

Expected bias			
Credit card default prediction		(good) credit payment history	↑
Hate speech prediction		(presence of) offensive terms	↑
Unintended bias			
Credit card default prediction		(minority) ethnicity	↓
Hate speech prediction		language variant	↓

- Unintended biases → **unfair algorithmic decisions** and **discrimination**
- **Discrimination:** “**unjust or prejudicial** treatment of different **categories of people**, especially, on the grounds of race, age, or sex”

Some cases of unfair algorithmic decisions

- COMPAS (tabular data)
 - Public dataset contains information from Broward County, Florida
 - Goal: Predict two-year violent recidivism



Some cases of unfair algorithmic decisions

- Chatbot Tay, Microsoft (**textual** data)
 - Deployed on Twitter in 2016

Cases of unfair algorithmic decisions

- Other critical applications:
 - Loan requests
 - Job applications
 - Stop & Frisk
 - ...
- **Need of fairness**
 - Unfair outcomes not only affect human rights...
 - ...but they **undermine public trust** in artificial intelligence!

Algorithmic fairness

- **Assessing (un)fairness**
 - Based on **decision outcomes**
 - Based on the **reliance** of the model on “sensitive features”
- **Mitigating unfairness**
 - **Enforce** fairness constraints while training, e.g.:

$$P(Y = \text{true} | \text{gender} = \text{female}) = P(Y = \text{true} | \text{gender} = \text{male})$$

- **Drawback:** complexity
- **Exclude** sensitive/salient features
 - **Drawback:** Decrease accuracy

Assessing (un)fairness

Group fairness notions

Individual fairness notions

Assessing (un)fairness

- **Group** fairness notions:

- Separate instances into **two groups** w.r.t. a sensitive feature A
- **Unprivileged** group (*unp*) *versus* **privileged** group (*priv*)
- Example: **female** *versus* **male**

- **Equal Opportunity:** focus on true positives (TP)

$$\frac{TP_{\textcolor{blue}{unp}}}{TP_{\textcolor{blue}{unp}} + FN_{\textcolor{blue}{unp}}} = \frac{TP_{\textcolor{red}{priv}}}{TP_{\textcolor{red}{priv}} + FN_{\textcolor{red}{priv}}}$$

- **Predictive Equality:** focus on false positives (FP)

$$\frac{FP_{\textcolor{blue}{unp}}}{FP_{\textcolor{blue}{unp}} + TP_{\textcolor{blue}{unp}}} = \frac{FP_{\textcolor{red}{priv}}}{FP_{\textcolor{red}{priv}} + TP_{\textcolor{red}{priv}}}$$

		Actual outcome	
		$Y = 1$	$Y = 0$
Pred	$\hat{Y} = 1$	TP (true positive)	FP (false positive)
	$\hat{Y} = 0$	FN (false negative)	TN (true negative)

Assessing (un)fairness

- **Group fairness notions. Example Job Hiring (Y)**

(a) Dataset					
Gender	Education Level	Job Experience	Age	Marital Status	Y
Female 1	8	2	39	single	0
Female 2	8	2	26	married	1
Female 3	12	8	32	married	1
Female 4	11	3	35	single	0
Female 5	9	5	29	married	1
Male 1	11	3	34	single	1
Male 2	8	0	48	married	0
Male 3	7	3	43	single	1
Male 4	8	2	26	married	1
Male 5	8	2	41	single	0
Male 6	12	8	30	single	1
Male 7	10	2	28	married	1

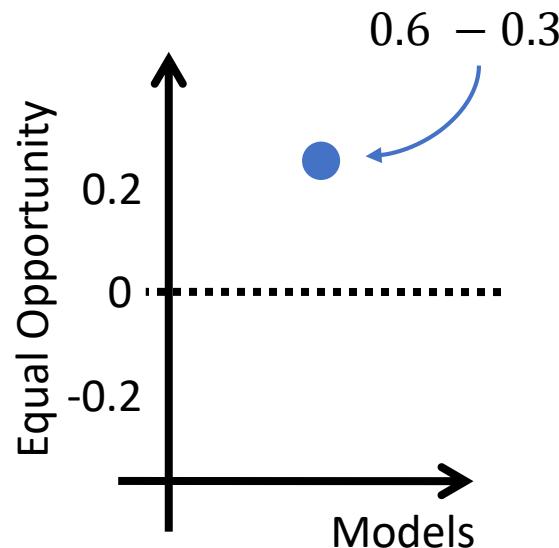
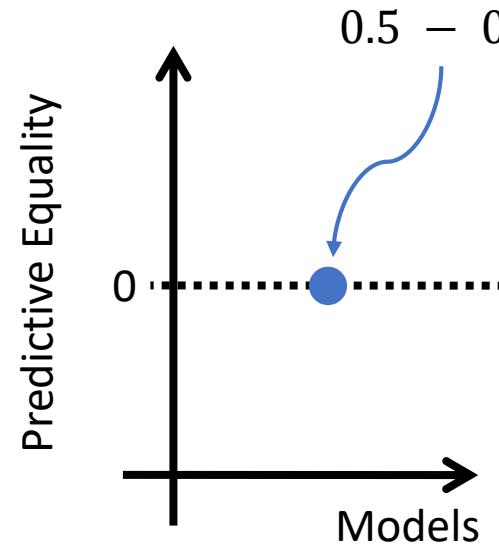
(b) Prediction		
	\hat{Y}	S
	1	0.5
	0	0.1
	1	0.5
	0	0.2
	0	0.3
	1	0.8
	0	0.1
	0	0.1
	1	0.5
	1	0.5
	1	0.8
	0	0.3

		Actual outcome	
		Male	Female
Pred	Y = 1	TP = 3	FP = 1
	$\hat{Y} = 0$	FN = 2	TN = 1

TPR for male and female groups is 0.6 and 0.33
FPR is exactly the same (0.5) for both groups.

Assessing (un)fairness

- **Group fairness notions.** Example **Job Hiring (Y)**



		Actual outcome	
		Male	Female
Pred	Y = 1	TP = 3	TP = 1
	Y = 0	FP = 1	FP = 1
		Actual outcome	
		Male	Female
Pred	Y = 1	FN = 2	FN = 2
	Y = 0	TN = 1	TN = 1

TPR for male and female groups is 0.6 and 0.33
FPR is exactly the same (0.5) for both groups.

Assessing (un)fairness

- **Group** fairness notions

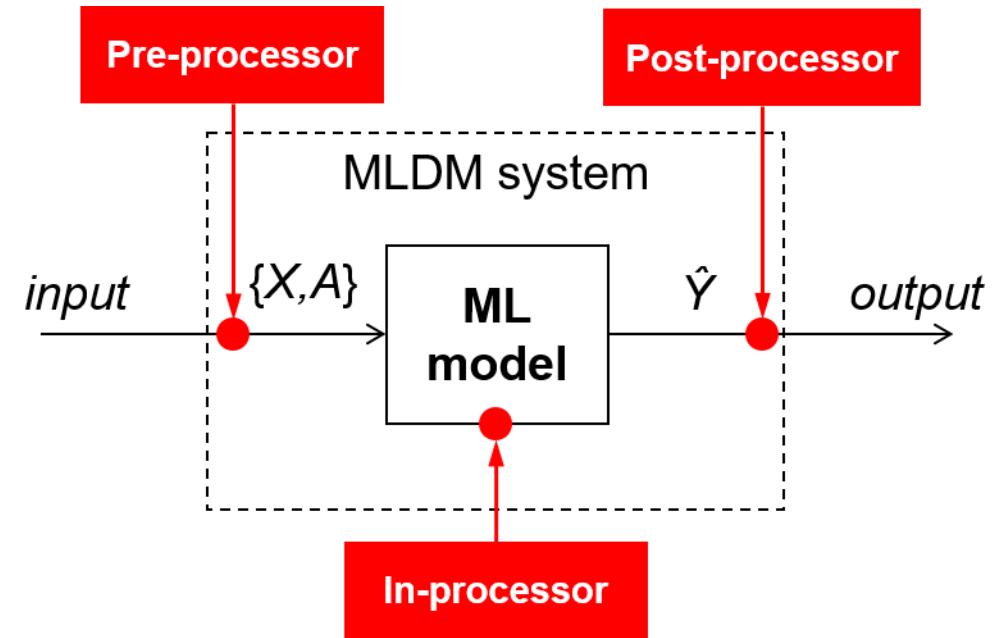
- Ignore **non-sensitive** features → **may hide unfairness!**
- Several notions: **Impossible** to satisfy **all** of them at the same time!

- **Individual** fairness notions

- Takes **non-sensitive** features into account
- But it **requires** a **measure of similarity** between two **individuals**

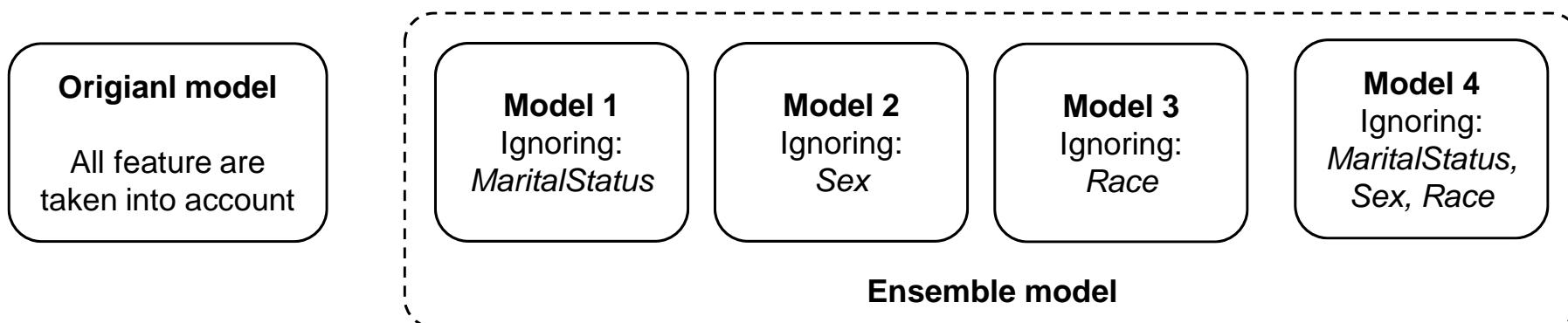
Mitigating unfairness

- **Pre-processing**
 - Modify input
- **In-processing**
 - Modify the algorithm to impose fairness during the training process
- **Post-processing**
 - Modify outputs
- **Hybrid-processing**
 - Combine several processors

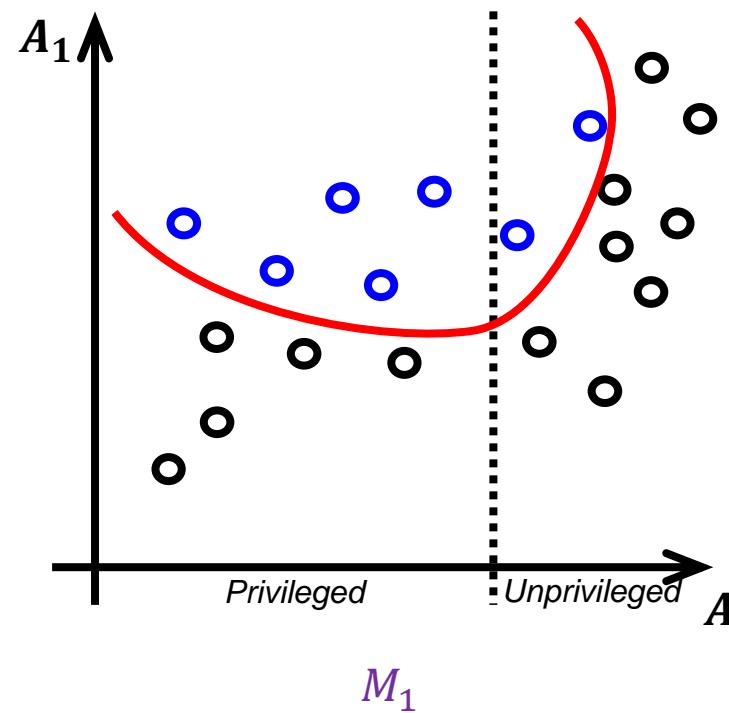
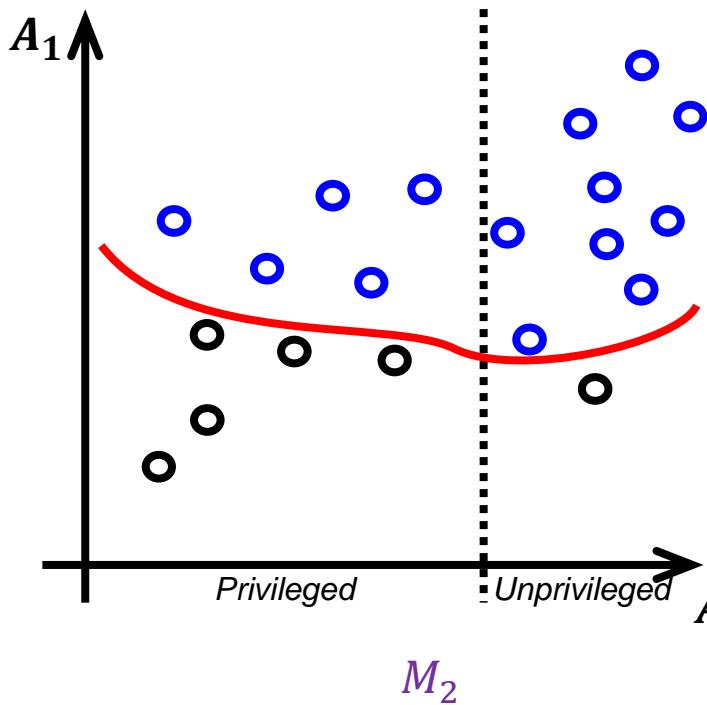
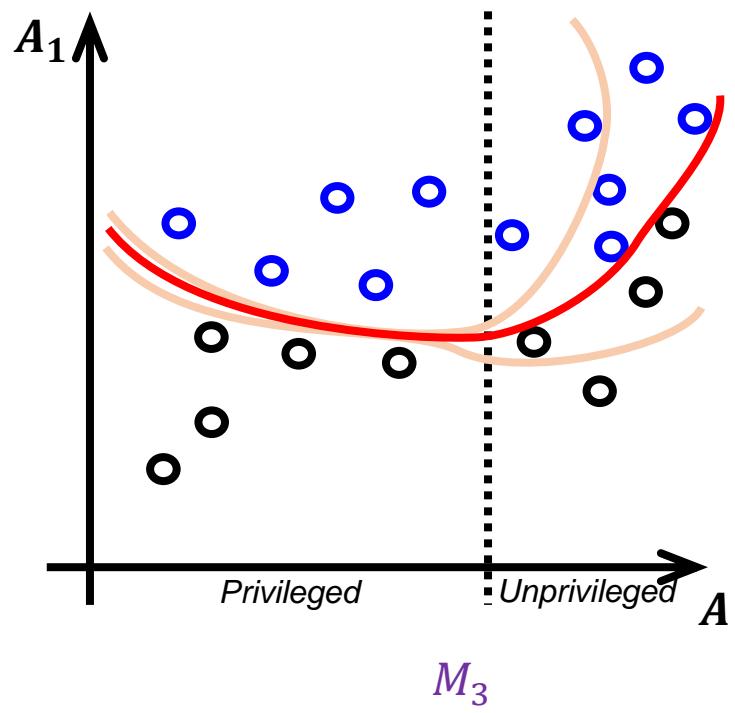


Example: pre-processing

- Illustration taken from the [Adult dataset](#)
 - **Goal:** predict if a person earns > US\$ 50k per year
 - Profiles (demographic and socio-economic)
 - **Sensitive features:** '*MaritalStatus*', '*Sex*', and '*Race*'
- Which sensitive feature are removed before training



Example: post-processing

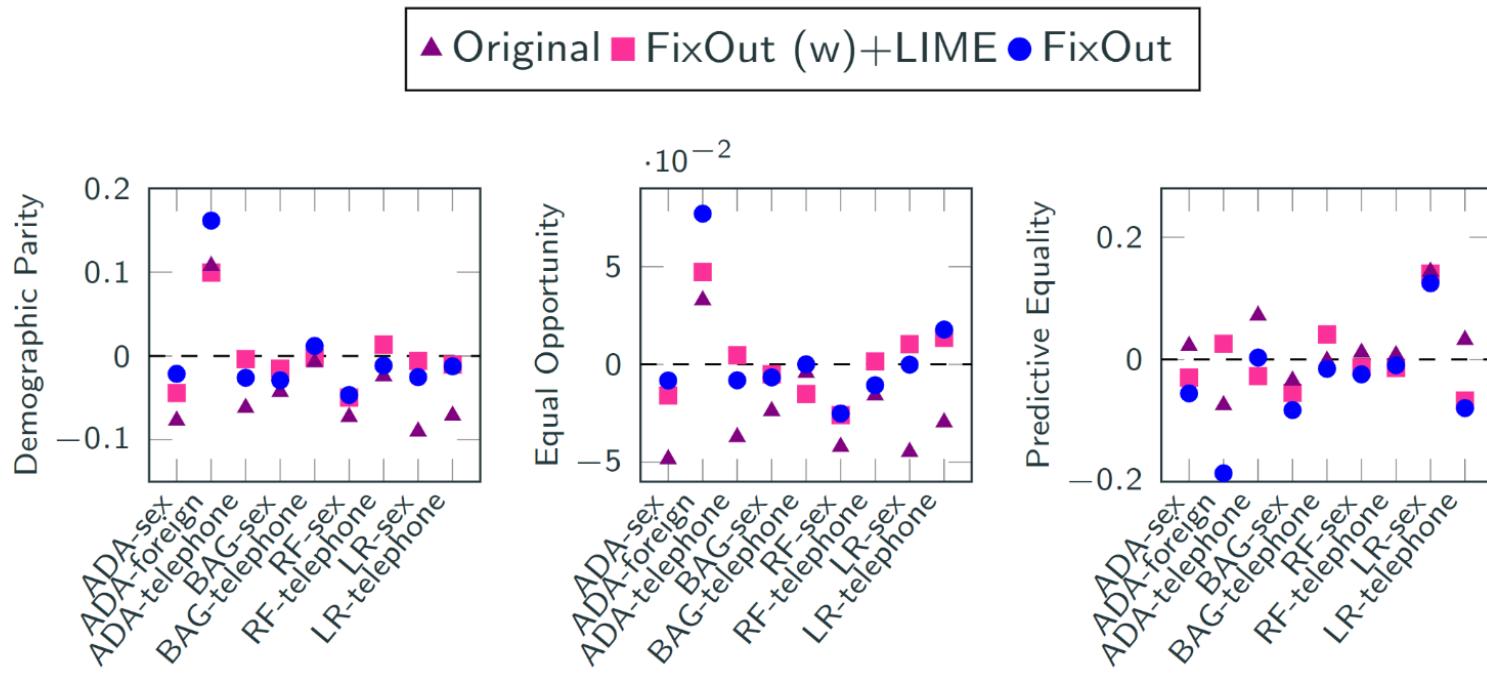


- M_1 was trained with the sensitive feature A
- M_2 was trained after removing A
- M_3 aggregates M_1 and M_2 's outputs

Example: Credit card default prediction

- **German Credit Card Score**
 - **Goal:** Predict credit risks (likely & unlikely to pay back)
 - Applicant profiles (demographic and socio-economic).
 - **Sensitive features:** '*Statussex*', '*telephone*', '*foreign worker*'
- **Empirical setting**
 - 4 different classifiers (models) trained: 70% training & 30% test data
 - Used: SMOTE oversampling
- Question: Are these models fair?

Assessment w.r.t. some group fairness notions (German)



- **Fairest model:** dashed line (zero) indicates the optimal value
- **Classifiers:** AdaBoost (ADA), Bagging (BAG), Random Forest (RF), Logistic Regression (LR)
- **Sensitive features:** 'sex', 'foreign worker', 'telephone'

Another example: Hate speech detection

- **Goal:** Classify tweets as hate speech or not
- Data: *Hate speech* dataset (tweets)*
- Two language variants
 - Standard American English & African-American English
- Unfair outcomes w.r.t. tweets written in a particular language variant
- Sensitive words : ‘*nigga*’, ‘*nigger*’, ...
- Idea: Bag of Words (BoW) (Or: Groups of words)

*Davidson et al. **Automated hate speech detection and the problem of offensive language**. AAAI. 2017

Another example: Hate speech detection

Word	Without grouping		With grouping	
	Rank	Contrib.	Rank	Contrib.
<i>niggah</i>	18	0.149	23	0.03
<i>nigger</i>	15	0.164	21	0.031
<i>nigguh</i>	22	0.13	83	0.008
<i>nig</i>	12	0.202	65	0.011
<i>nicca</i>	22	0.107	39	0.018
<i>nigga</i>	20	0.125	12	0.067
<i>white</i>	25	0.087	36	0.018

References

- **AI & ML**
 - Russell, et al. **Artificial intelligence a modern approach**. Pearson Education, 2010.
 - Bishop, et al. **Pattern recognition and machine learning**. New York: Springer, 2006.
- **ALGORITHMIC FAIRNESS**
 - Barocas et al. **Fairness in machine learning**. 2017.
 - Makhlof, K. et al. **On the applicability of machine learning fairness notions**. SIGKDD Explorations, 2021.
 - Alves et al. **Reducing unintended bias of ml models on tabular and textual data**. In : DSAA, 2021.